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SUMMARY

In this study the numerical performances of wide and compact fourth-order formulation of the steady 2D
incompressible Navier–Stokes equations will be investigated and compared with each other. The benchmark
driven cavity flow problem will be solved using both wide and compact fourth-order formulations and the
numerical performances of both formulations will be presented and also the advantages and disadvantages
of both formulations will be discussed. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In computational fluid dynamics field of study, most second-order accurate finite difference
approaches use three point discretizations. Depending on the flow problem, if a higher spatial
accuracy is desired then fourth-order accuracy can be chosen. In order to achieve fourth-order
spatial accuracy, standard five point discretization can be used. With five point discretization, wide
fourth-order formulation of the Navier–Stokes formulation has disadvantages near the boundaries
such that when a wide fourth-order formulation is used the points adjacent to the boundaries have
to be treated specially.

Another way of achieving fourth-order spatial accuracy is to use compact fourth-order formula-
tions. Compact fourth-order formulations provide fourth-order spatial accuracy in a 3×3 stencil.
The main advantage of this type of formulation is that it could be easily used at the points adjacent
to the boundary without a complexity.

∗Correspondence to: Ercan Erturk, Gebze Institute of Technology, Energy Systems Engineering Department, Gebze,
Kocaeli 41400, Turkey.

†E-mail: ercanerturk@gyte.edu.tr, URL: http://www.cavityflow.com

Copyright q 2008 John Wiley & Sons, Ltd.



COMPARISON OF WIDE AND COMPACT FOURTH-ORDER FORMULATIONS 993

In the literature it is possible to find many studies that use ‘compact high-order finite difference
approximations’. These studies can be categorized into two depending on the approach used for
obtaining the compact high-order finite difference approximations. In one category, the compact
high-order finite difference approximations are basically generalizations of the Padé scheme and the
studies of Lele [1] and Visbal and Gaitonde [2] are examples for this type of ‘compact high-order’
studies. For this category of the compact high-order finite difference approximations Zingg [3, 4]
compared the numerical efficiency of the compact versus non-compact finite difference methods.

In the second category, basically the Taylor series and the derivatives of the governing equations
are used in obtaining the compact high-order finite difference approximations. As examples of this
type of ‘compact high-order’ studies, Spotz and Carey [5] and Li et al. [6], Zhang [7], Dennis and
Hudson [8], MacKinnon and Johnson [9] and Gupta et al. [10] have demonstrated the efficiency
of compact fourth-order formulations of the streamfunction and vorticity equations for uniform
grids, and also Ge and Zhang [11] and Spotz and Carey [12] have applied the fourth-order compact
formulation to non-uniform grids. This study is intended to contribute to this type of ‘compact
high-order’ literature.

Recently Erturk and Gokcol [13] have presented a new fourth-order compact formulation. The
uniqueness of this formulation is that the presented compact fourth-order formulation of the Navier–
Stokes equations are in the same form with the Navier–Stokes equations with additional coefficients.
In this formulation if these coefficients are chosen as zero the Navier–Stokes equations are obtained.
Therefore, if a numerical code is written for the solution of the introduced compact fourth-order
formulation, the obtained numerical solution is spatially fourth-order (O(�x4)) accurate to the
Navier–Stokes equations. In this code if the coefficients are chosen as zero then the solution of
the introduced compact fourth-order formulation is spatially second-order (O(�x2)) accurate to
the Navier–Stokes equations. Therefore, with this formulation, using a single equation one can
either obtain a second accurate or a fourth-order accurate numerical solution of the Navier–Stokes
equations just by setting up some coefficients. Moreover, using the introduced formulation one can
easily change an existing second-order accurate numerical code to provide fourth-order accuracy
and to do this the only thing have to be done is to add some coefficients into the existing second-
order accurate numerical code. When these coefficients are added into a second-order code to
obtain fourth accurate solutions, the code will run slower because of the extra CPU work of
evaluating these inserted coefficients. Erturk [14] has shown that this extra CPU work is slightly
dependent on the numerical method used. Erturk [14] also showed that for the driven cavity flow
when alternating direction implicit (ADI) method is used in order to achieve numerical solutions
with the same level of convergence (defined as convergence to the same maximum percent change
in flow variables), a fourth-order accurate numerical code requires 1.8 times more CPU time than
a second-order accurate numerical code.

Using the Taylor series expansion, one can easily prove that both compact fourth-order formu-
lations and five point wide fourth-order formulations indeed provide fourth-order spatial accurate
numerical solutions. In the literature, to the best of author’s knowledge, there is no study that
compares the solutions of compact fourth-order formulation and the solutions of wide fourth order
formulation in terms of accuracy and numerical performance.

The aim of this study is then to solve the steady 2D incompressible Navier–Stokes equations
with fourth-order accuracy using both compact fourth-order formulation and wide fourth-order
formulation. First, in order to compare the spatial accuracy of both formulations, we will consider an
analytical test case. Then in order to compare both formulations in terms of numerical performances,
as a test case we will consider the benchmark cavity flow for different Reynolds numbers with
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different grid meshes and we will compare the CPU time and number of iterations needed for
convergence for both formulations. We will also document the maximum allowable time step that
could be used in both formulations as a sign of stability characteristics of the formulations. Finally,
we will document the advantages and disadvantages of each formulation.

2. FOURTH-ORDER COMPACT FORMULATION

We consider the steady 2D incompressible Navier–Stokes equations in streamfunction (�) and
vorticity (�) formulation. In non-dimensional form they are given as
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where x and y are the Cartesian coordinates and Re is the Reynolds number.
If we discretize Equations (1) and (2) using three point central differencing, the following finite

difference equations provide second-order (O(�x2,�y2)) accurate solutions:

�xx +�yy =−� (3)
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where subscripts denote second-order (O(�x2,�y2)) three point central finite difference derivative
approximations.

As explained in Erturk and Gokcol [13], with using second-order (O(�x2,�y2)) three point
central differencing, the solution of the following finite difference equations are fourth-order
(O(�x4,�x2�y2,�y4)) accurate to the Navier–Stokes equations (1) and (2):
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We note that Equations (5) and (6) are in the same form with Equations (3) and (4) except with
additional coefficients A, B, C , D, E and F . In Equations (5) and (6) if the coefficients A, B, C , D,
E and F are chosen as zero, we identically obtain Equations (3) and (4). Therefore, the solution of
equations (5) and (6) become second-order accurate (O(�x2,�y2)) to the Navier–Stokes equations
when the coefficients are chosen as zero. On the other hand, if the coefficients A, B, C , D, E and
F in Equations (5) and (6) are calculated as they are defined in Equation (7), then the solution
of these Equations ((5) and (6)) are fourth-order accurate (O(�x4,�x2�y2,�y4)) to the Navier–
Stokes equations. As demonstrated in Erturk [14], Equations (5) and (6) provide an easy way
of obtaining either second-order or fourth-order spatial accurate solutions of the Navier–Stokes
simply just by using the appropriate coefficients.

In the limit, when �x→0 and �y→0, the finite difference derivative approximations in
Equations (5), (6) and (7) could be written as partial derivatives as the following:
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As it is described briefly in Erturk and Gokcol [13], the numerical solutions of Equations (8) and
(9) are fourth-order accurate (O(�x4,�x2�y2,�y4)) to the Navier–Stokes equations (1) and (2),
strictly provided that second-order central discretizations (O(�x2,�y2)) are used and also strictly
provided that a uniform grid mesh with �x and �y is used.

One thing is important to note here that the Navier–Stokes equations (1) and (2) are a subset of
Equations (8) and (9), such that when the coefficients A, B, C , D, E and F in Equations (8) and
(9) are chosen as zero, we obtain the Navier–Stokes equations (1) and (2). Since Equations (8)
and (9) and the Navier–Stokes equations (1) and (2) are in the same form, any numerical method
suitable for the Navier–Stokes equations (1) and (2) can easily be applied to solve Equations (8)
and (9).

Moreover, if we have an existing code that solve Navier–Stokes equations (1) and (2) with
second-order accuracy, we can easily alter the existing code by adding the coefficients A, B, C ,
D, E and F defined in Equation (10) into the code, then the existing second order accurate code
will turn into a fourth order accurate code. Therefore, a single numerical code for the solution
of Equations (8) and (9) can provide both second-order and fourth-order spatial accuracy just by
setting some coefficients.

3. NUMERICAL SOLUTION METHODOLOGY

We will numerically solve both the Navier–Stokes equations (1) and (2) and the introduced compact
fourth-order formulation of the Navier–Stokes equations (8) and (9). Both of these equation sets
are nonlinear and, therefore, they need to be solved in an iterative manner. In order to have an
iterative numerical algorithm, we assign pseudo-time derivatives to these equations, such that as
an example for Equations (8) and (9) we obtain the following:
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We solve these Equations (11) and (12) in the pseudo-time domain until the solutions converge to
the steady state.

For the solution method in the pseudo-time, we decided to use the ADI method. The ADI
method is a very widely used numerical method and in this method a 2D problem is solved in
two sweeps while solving the equation implicitly in one-dimension in each sweep. The reader is
referred to [15–17] for details.
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3.1. Compact fourth-order solution methodology

In order to obtain solutions of the fourth-order compact formulation, when we apply the ADI
method to solve Equations (8) and (9), first we solve the streamfunction equation and in order to
do this we first solve the following tri-diagonal system in the x-direction:

(
1− �t

2
�xx

)
�n+1/2=�n+ �t

2
�yy�

n+ �t

2
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Then we solve the following tri-diagonal system in the y-direction:
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After this we solve the vorticity equation and in order to do this we first solve the following
tri-diagonal system in the x-direction:
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Then we solve the following tri-diagonal system in the y-direction:
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In Equations (13), (14), (15) and (16), the superscripts denote the iteration time level, �xx and
�yy denote the second derivative three point central finite difference operators and similarly �x
and �y denote the first derivative three point central finite difference operators in the x- and the
y-direction, respectively, for example,

�x� = �i+1, j −�i−1, j

2�x
+O(�x2)

�xx� = �i+1, j −2�i, j +�i−1, j

�x2
+O(�x2)

(17)

where i and j are the grid index and � denote any differentiable quantity.
We note that we use the Thomas algorithm for the solution of these tri-diagonal systems .

Using the above numerical procedure defined in Equations (13), (14), (15) and (16) we solve
Equations (8) and (9) and obtain spatially fourth-order accurate solutions of the Navier–Stokes
equations.
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3.2. Wide fourth-order solution methodology

In order to obtain solutions of the fourth-order wide formulation, when we apply the ADI method to
solve the Navier–Stokes equations (1) and (2), similarly first we solve the streamfunction equation
and in order to do this we first solve the following penta-diagonal system in the x-direction:(
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�yy�
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Then we solve the following penta-diagonal system in the y-direction:(
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Then, similarly, we solve the vorticity equation and in order to do this we first solve the following
penta-diagonal system in the x-direction:(
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Then we solve the following penta-diagonal system in the y-direction:(
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We note that in Equations (18), (19), (20) and (21), the second and first derivative operators �xx ,
�yy , �x and �y denote five point central finite difference operators in the x- and the y-direction
respectively, for example,

�x� = −�i+2, j +8�i+1, j −8�i−1, j +�i−2, j

12�x
+O(�x4)

�xx� = −�i+2, j +16�i+1, j −30�i, j +16�i−1, j −�i−2, j

12�x2
+O(�x4)

(22)

where i and j are the grid index and � denote any differentiable quantity.
We note that in numerical solution of the wide formulation, we use the modified Thomas

algorithm for the solution of the penta-diagonal systems. Following the above numerical procedure
defined in Equations (18), (19), (20) and (21) we obtain spatially fourth-order accurate solutions
of the Navier–Stokes equations.

3.3. Boundary conditions

The compact formulations require a 3×3 stencil and, therefore, this formulation can be easily
used at the first set of grid points near the boundaries. However, wide formulations cannot be
applied directly to the first set of grid points near the boundaries. We are going to compare the
numerical solutions of wide and compact formulations; therefore, in order to isolate the effect of
the boundary conditions on both formulations, we would like to use the same boundary conditions
in both cases, so that the effect of the boundary conditions will be the same in both cases.

Störtkuhl et al. [18] have presented an analytical asymptotic solution near the corners of the
driven cavity and using finite element bilinear shape functions they also have presented a singularity
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removed boundary condition for vorticity at the corner grid points as well as at the wall grid points.
In this study, we follow Störtkuhl et al. [18] and calculate the vorticity values at the wall grid
points (circle points in Figure 1(a)) as the following:

�b=− 9V

2�h
− 3

2�h2
(�d +�e+� f )−

1

8
(2�a+2�c+�d +4�e+� f ) (23)

where V is the speed of the wall, which is equal to 1 for the moving top wall and equal to 0 for
the three stationary walls. The grid points a, b, c, d , e and f are shown in Figure 1(b).

For corner points, we again follow Störtkuhl et al. [18] and calculate the vorticity values at the
corner grid points (diamond point in Figure 1(a)) as the following:

�b=− 9V

2�h
− 3

�h2
� f −

1

4
(2�c+� f +2�e) (24)

where again V is equal to 1 for the upper two corners and it is equal to 0 for the bottom two
corners. The grid points b, c, e and f are also shown in Figure 1(c). The reader is referred to
Störtkuhl et al. [18] for details on the boundary conditions.

wall boundary 

Interior
grid 

points

Interior
grid 

points

b c

e f

Δh

Δh

a b c

d e f

Δh

Δh

(a)

(b) (c)

Figure 1. Grid points at boundaries: (a) grid points adjacent to wall; (b) grid points at the
wall; and (c) grid points at the corners.
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In this study, for the first set of grid points adjacent to the wall, we decided to use the compu-
tational boundary method (CBM). For details on CBM, the reader is referred to Huang and Yang
[19], Yang [20], Gresho [21] and Spotz [22]. Using a fourth-order one-sided approximation for
the velocity on the wall we obtain the following expression:

±Vw= ��

�n

∣∣∣∣
0
= −25�0+48�1−36�2+16�3−3�4

12h
+O(h4) (25)

where Vw denotes the wall velocity, n is the normal wall direction, h is the grid spacing, 0 denotes
the grid points on the wall, 1 denotes the first set of grid points adjacent to the wall and similarly
2, 3 and 4 denote the second, third and fourth set of grid points adjacent to the wall, respectively.
From this relation we can calculate the streamfunction at the grid points near the boundary (square
points in Figure 1(a)) as the following:

�1= ±12hVw+25�0+36�2−16�3+3�4

48
(26)

In order to calculate the vorticity values at these grid points, we used the streamfunction equation
(1). Using a five point wide fourth-order formulation for the streamfunction equation, the vorticity
at the first set of grid points adjacent to the boundary (square points in Figure 1(a)) is calculated
as the following:

�i, j = −�i+2, j +16�i+1, j −30�i, j +16�i−1, j −�i−2, j

12�x2

+ −�i, j+2+16�i, j+1−30�i, j +16�i, j−1−�i, j−2

12�y2
+O(�x4,�y4) (27)

We note that this approximation requires the streamfunction values at grid points outside the
computational domain (hexagon points in Figure 1(a)). In order to find the streamfunction values
at these grid points, we use the following fourth-order relation:

±Vw= ��

�n

∣∣∣∣
0
= −3�−1−10�0+18�1−6�2+�3

12h
+O(h4) (28)

where −1 denotes the grid point outside the computational domain. From this relation we calculate
the value of streamfunction at the exterior grid points (�−1) and use it in Equation (27) to calculate
the vorticity at the grid points adjacent to the boundary.

At the first diagonal grid points near the corners (triangle point in Figure 1(a)), we calculate the
streamfunction and vorticity values using the Gauss–Seidel method on the five point fourth-order
wide formulation of the streamfunction equation (1) and vorticity equation (2), respectively.

We note that in both wide and compact formulations, we used the above described boundary
conditions for the grid points on the wall and for the first set of grid points adjacent to the wall.
Then we used the wide and compact formulations to obtain the numerical solutions at interior grid
points shown in Figure 1(a).
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4. RESULTS AND DISCUSSIONS

Following the numerical procedure described in the previous section, we obtain spatially fourth-
order solutions of the Navier–Stokes equations obtained using both compact and wide formulations.

For the choice of time steps in solving the governing equations, we decided to use different time
steps, �t , for streamfunction and vorticity equations, as it was also done in Erturk [14]. If we solve
the streamfunction and vorticity equations using three point second-order accurate discretization
using the ADI method, tri-diagonal matrices appear on the implicit LHS of the equations. In
streamfunction equation the diagonal elements on the LHS matrices become 1+2�t/�h2, and in
vorticity equations the diagonal elements on the LHS matrices become 1+(1/Re)(2�t/�h2). We
decided to choose different time steps for streamfunction and vorticity equations such that these
different time steps would make the diagonal elements the same. Therefore, we use �t=��h2 for
the streamfunction equation and similarly we use �t=�Re�h2 for the vorticity equation, where �
is a coefficient we can choose. We solve both the wide and compact formulations using the same
time steps.

In this study we would also like to document the maximum allowable time step �t that we can
use in both formulations for convergence as a sign of numerical stability characteristics of both
formulations. In order to do this, we first solve the wide and compact formulations using the same
time steps. Then we increase �, i.e. increase the time step �t , and solve the wide and compact
formulations again. We continue doing this until at some �t the solution does not converge.
Therefore, we would document the maximum allowable �t for convergence for wide and compact
formulations for a given Reynolds number and grid mesh.

In this study, in all of the cases considered, we start the iterations from a homogeneous initial
guess and continue until a certain condition of convergence is satisfied. As the measure of the
convergence to the same level, one option is to use the residual of the equations as it was also used
by Erturk et al. [23]. However, we are actually solving two different equations, the Navier–Stokes
equations (1) and (2) and also the fourth-order equations (8) and (9), and we are trying to compare
the numerical performance of these two different equations. Therefore, the residual of these two
different equations may not indicate the convergence to the same level. Alternatively, we can use
the difference of the streamfunction and vorticity variables between two time steps as the measure
of convergence for the two equations. However, the solutions of the two different equations are
slightly different. Since the solutions are different, the difference of the streamfunction and vorticity
variables between two time steps may not show the same convergence level for these equations
also. Therefore, in this study, as convergence criteria we decided to use the difference of the
streamfunction and vorticity variables between two time steps normalized by the previous value
of the corresponding variable, such that

Residual� = max

(∣∣∣∣∣
�n+1
i, j −�n

i, j

�n
i, j

∣∣∣∣∣
)

Residual� = max

(∣∣∣∣∣
�n+1
i, j −�n

i, j

�n
i, j

∣∣∣∣∣
) (29)

These residuals provide an indication of the maximum percent change in � and � variables in each
iteration step and in this study we let the iterations converge until both Residual� and Residual�
are less than 10−8.
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Using the Taylor series expansion, mathematically it is straightforward to show that the first
leading truncation error term in both fourth-order compact formulations and five point fourth-order
wide formulations is indeed fourth order. In order to document this numerically, we decided to
compare the numerical results with a known analytical solution using a model problem introduced
by Richards and Crane [24]. Inside the domain (x, y)=([0,1], [0,1]), the following analytical
solutions satisfy the Navier–Stokes equations (1) and (2):

� = y−x

Re
−e(x+y)

� = 2e(x+y)
(30)

For this model problem, as the boundary conditions we decided to use the analytical solutions
defined in Equation (30) at the grid points on the boundaries and at the first set of grid points
adjacent to the boundaries. This way we would be able to avoid any effect of numerical boundary
condition approximations on the numerical solution and concentrate on the accuracy of the solution
of both formulations in the interior domain for a given analytical values at the boundaries.

We note that in Equation (30), the vorticity is independent of Re and the solution of the
streamfunction at different Re numbers looks almost the same in a contour plot; therefore, for this
model problem we only considered the case where Re=1000. We solve this model problem with
wide and compact fourth-order formulations using different grid meshes with �h= 1

16 ,
1
32 ,

1
64 ,

1
128

where �x=�y=�h. In these fourth-order solutions the average absolute difference between the
exact solution (�ex,�ex) given in Equation (30) and the numerical solution (�i, j ,�i, j ) defined as

E� =
∑

i, j |�ex(xi , y j )−�i, j |
N

E� =
∑

i, j |�ex(xi , y j )−�i, j |
N

(31)

where N being the total number of grid points should be proportional to hm where the power
should be equal to m=4. Since these average absolute differences should have the following form:

E=C�hm (32)

Logarithm of both sides gives

logE= logC+m log�h (33)

In Table I, we have tabulated the average absolute differences (E� and E�) for wide and compact
fourth-order solutions for different grid meshes and also in Figure 2, these average absolute
differences are plotted with respect to the grid spacing in a log–log scale. In Figure 2, the average
absolute differences of the wide and compact formulations are shown by square and circle symbols,
respectively. In order to have an idea on how these average absolute differences change with
respect to the grid spacing, two best fit linear lines with slopes of 4 are drawn in the same figure.
From Figure 2 we can clearly see that both wide and compact fourth-order formulations (shown
by square and circle in the figure) indeed provide fourth-order accurate solutions, such that for
both formulations, the slope between logE and log�h is very close to m≈4.
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Table I. Average absolute error and convergence rate of fourth-order formulations.

No. of points E� m E� m

Compact formulation 16×16 6.8849E−09 1.3766E−08
32×32 4.5836E−10 3.91 9.1590E−10 3.91
64×64 2.9545E−11 3.96 5.9001E−11 3.96

128×128 1.9523E−12 3.92 3.8990E−12 3.92
256×256 1.2396E−13 3.98 2.4502E−13 3.99

Wide formulation 16×16 2.6410E−08 5.0351E−08
32×32 1.7978E−09 3.88 3.5445E−09 3.83
64×64 1.1710E−10 3.94 2.3164E−10 3.94

128×128 7.7605E−12 3.92 1.5395E−11 3.91
256×256 4.8750E−13 3.99 9.7813E−13 3.98

Figure 2. Average absolute errors in streamfunction and vorticity variables in fourth-order wide and
compact formulations with respect to grid spacing: (a) streamfunction (E�) and (b) vorticity (E�).

Using the average absolute differences (E� and E�) tabulated in Table I, since the grid size is
decreased by a factor of 2, we can calculate the convergence rate m using the following formula:

E(�h=�h1)

E

(
�h= �h1

2

)=2m (34)

The convergence rate m for both wide and fourth-order formulations is also tabulated in Table I.
From this table, we can again see that when the grid spacing is decreased progressively by half,
the convergence rates of both formulations is very close to m≈4.

Next, we considered the benchmark driven cavity flow problem. For the driven cavity flow, we
obtain fourth-order numerical solutions using both wide and compact fourth-order formulations
using the boundary conditions described in the previous section and also using both 128×128 and
256×256 grid mesh.
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Figures 3–5 show the streamfunction contours of the compact and wide formulation solutions for
a variety of Reynolds numbers (Re=100,1000,2500) obtained with using 256×256 grid points.

From these figures we can see that both compact and wide fourth-order formulation solutions
are very close to each other. The difference between them is most visible in the region of the
center of the main circulation. In the literature, for the benchmark driven cavity flow, the value of
the streamfunction and the vorticity at the center of the main circulation and also the location of

Figure 3. Fourth-order streamfunction contours of driven cavity flow, Re=100:
(a) compact solution and (b) wide solution.

Figure 4. Fourth-order streamfunction contours of driven cavity flow, Re=1000:
(a) compact solution and (b) wide solution.
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Figure 5. Fourth-order streamfunction contours of driven cavity flow, Re=2500:
(a) compact solution and (b) wide solution.

Table II. Properties at the center of the main circulating eddy in driven cavity flow.

Re Ref. � � x y

2500 Present—compact solution −0.1212883 −1.973684 0.5195 0.5430
Present—wide solution −0.1212327 −1.972586 0.5195 0.5430
Erturk and Gokcol [13] −0.121472 −1.976132 0.5200 0.5433
Barragy and Carey [25] −0.1214621 — 0.5189 0.5434
Erturk et al. [23] −0.121470 −1.976117 — —

1000 Present—compact solution −0.1188756 −2.066955 0.5313 0.5664
Present—wide solution −0.1188513 −2.066586 0.5313 0.5664
Erturk and Gokcol [13] −0.118938 −2.067760 0.5300 0.5650
Botella and Peyret [26] −0.1189366 −2.067753 0.5308 0.5652
Schreiber and Keller [27] −0.118821 −2.0677 — —
Erturk et al. [23] −0.118942 −2.067213 — —
Barragy and Carey [25] −0.11893 — — —

100 Present—compact solution −0.1035173 −3.181031 0.6172 0.7383
Present—wide solution −0.1035161 −3.181007 0.6172 0.7383

this center are widely accepted as the flow parameters to compare the accuracy of the numerical
solutions. In Table II we tabulated the value of the streamfunction and the vorticity at the center of
the main circulation and the location of the center for the Reynolds numbers considered. In Table II
we have also tabulated solutions found in the literature that we believe to be very accurate. Erturk
and Gokcol [13] have presented compact fourth-order (�h4) solutions obtained using a very fine
grid mesh (600×600). Botella and Peyret [26] have used a Chebyshev collocation method and
obtained highly accurate spectral solutions for the driven cavity flow. Barragy and Carey [25] have
used a p-type finite element scheme and presented highly accurate (�h8 order) solutions. Schreiber
and Keller [27] have presented high-order (�h8 order in theory) solutions obtained using repeated
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Richardson extrapolation, using the solutions obtained on different grid mesh sizes. Erturk et al.
[23] have also used repeated Richardson extrapolation and presented high-order (�h6 order in
theory) solutions. From Table II we can see that the compact and wide formulation solutions are
very close to each other and also all of the solutions agree well with the highly accurate solutions
found in the literature.

In order to test the numerical performances of the wide and compact formulations, we then
solve the benchmark driven cavity flow problem several times with different time steps �t by
changing �. In order to see the effect of the number of grids on the numerical performances of both
formulations, we have tabulated the numerical performances of wide and compact formulations
to achieve same level of convergence. Table III shows the CPU time and the number of iterations
necessary for convergence of the wide and compact fourth-order formulations for a 128×128 grid
mesh and also Table IV shows the same for a 256×256 grid mesh.

From Tables III and IV we can see that for the same Reynolds number and for the same time step
(�), both wide fourth-order formulation and compact fourth-order formulation converge to the same

Table III. Numerical performances of compact and wide fourth-order
formulations with 128×128 grid mesh.

Compact formulation Wide formulation

Re � CPUcompact

Iteration
nocompact CPUwide

Iteration
nowide

CPUcompact
CPUwide

Iteration nocompact
Iteration nowide

CPUcompact
CPUwide

∣∣∣
max�t

2500 1.3 341.2 15 937 1.33
1.2 368.1 17 211
1.1 398.9 18 715 256.3 18 482 1.56 1.01
1.0 439.0 20 517 283.0 20 269 1.55 1.01
0.9 486.7 22 712 314.0 22 464 1.55 1.01
0.8 546.6 25 446 351.9 25 200 1.55 1.01
0.7 625.1 28 944 398.8 28 706 1.57 1.01
0.6 719.4 33 577 463.4 33 358 1.55 1.01
0.5 858.0 40 007 554.8 39 937 1.55 1.00

1000 1.3 326.7 16 529 1.23
1.2 350.6 17 195
1.1 389.1 18 704 266.2 19 018 1.46 0.98
1.0 427.5 20 507 291.9 20 853 1.46 0.98
0.9 474.8 22 702 322.1 23 085 1.47 0.98
0.8 527.4 25 430 360.2 25 861 1.46 0.98
0.7 598.3 28 915 410.3 29 407 1.46 0.98
0.6 694.0 33 523 478.3 34 095 1.45 0.98
0.5 833.0 40 048 568.1 40 587 1.47 0.99

100 1.3 242.4 11 246 1.31
1.2 255.7 12 083
1.1 275.4 13 172 185.5 13 052 1.48 1.01
1.0 302.9 14 478 202.8 14 320 1.49 1.01
0.9 336.2 16 071 224.8 15 883 1.50 1.01
0.8 379.0 18 059 251.7 17 832 1.51 1.01
0.7 431.8 20 610 287.5 20 329 1.50 1.01
0.6 497.5 24 003 336.1 23 646 1.48 1.02
0.5 596.5 28 739 401.8 28 264 1.48 1.02
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Table IV. Numerical performances of compact and wide fourth-order
formulations with 256×256 grid mesh.

Compact formulation Wide formulation

Re � CPUcompact

Iteration
nocompact CPUwide

Iteration
nowide

CPUcompact
CPUwide

Iteration nocompact
Iteration nowide

CPUcompact
CPUwide

∣∣∣
max�t

2500 1.3 6156.6 65039 1.36
1.2 6700.5 69776
1.1 7253.1 76038 4525.2 72189 1.60 1.05
1.0 7961.0 83537 4975.3 79198 1.60 1.05
0.9 8738.5 92687 5500.3 87725 1.59 1.06
0.8 9770.7 104102 6076.6 98334 1.61 1.06
0.7 10998.9 118737 6834.0 111898 1.61 1.06
0.6 12838.1 138195 8053.0 129855 1.59 1.06
0.5 15608.1 165325 9784.8 154981 1.60 1.07

1000 1.3 5894.5 62087 1.29
1.2 6210.2 67136
1.1 5054.0 54731 3523.8 55593 1.43 0.98
1.0 5454.8 60109 3791.0 61454 1.44 0.98
0.9 6063.0 66665 4196.1 67659 1.44 0.99
0.8 6781.8 74835 4674.3 76031 1.45 0.98
0.7 7703.7 85302 5316.6 86771 1.45 0.98
0.6 8941.5 99195 6211.5 101055 1.44 0.98
0.5 10747.7 118538 7434.5 120988 1.45 0.98

100 1.3 4534.2 46785 1.28
1.2 4758.7 50239
1.1 5054.0 54731 3523.8 55593 1.43 0.98
1.0 5454.8 60109 3791.0 61454 1.44 0.98
0.9 6063.0 66665 4196.1 67659 1.44 0.99
0.8 6801.8 74835 4674.3 76031 1.46 0.98
0.7 7743.7 85302 5316.6 86771 1.46 0.98
0.6 8941.5 99195 6211.5 101055 1.44 0.98
0.5 10747.7 118538 7434.5 120988 1.45 0.98

level in about the same number of iteration such that the ratio of the number of iteration necessary
for convergence for wide formulation to the number of iteration necessary for convergence for
compact formulation is approximately ≈1. For wide and compact fourth-order formulations, the
convergence rate in the pseudo-time is approximately the same.

From Tables III and IV we also can see that, for the same Reynolds number and for the same
time step (�), the CPU time necessary for convergence of compact fourth-order formulation is
higher than the CPU time necessary for convergence of wide fourth-order formulation. For the
solution of the compact formulation, in each time step the coefficients A, B, C , D, E and F in
Equations (5) and (6) have to be calculated as they are defined in Equation (7) and this would
require a CPU time. The compact formulation requires the solution of tri-diagonal systems and
these tri-diagonal systems are solved efficiently using the Thomas algorithm. On the other hand,
the wide formulation requires the solution of penta-diagonal systems. For these penta-diagonal
systems, we used the modified Thomas algorithm. The modified Thomas algorithm for penta-
diagonal systems runs slower than the Thomas algorithm for tri-diagonal systems since it requires
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more mathematical instructions. Even though the modified Thomas algorithm runs slower, from
Tables III and IV we see that for convergence the compact formulation requires more CPU time
than that of the wide formulation. This shows that the extra CPU time necessary to calculate the
coefficients A, B, C , D, E and F is higher than the extra CPU time necessary for the modified
Thomas algorithm. For the same Reynolds number and for the same time step (�), in terms of
the CPU time necessary for convergence, the wide fourth-order formulation is more advantageous
than the compact fourth-order formulation such that the compact fourth-order code requires almost
≈1.5 more CPU time than the wide fourth-order code.

For a numerical formulation, the largest time step that the numerical code would not diverge is
an indicative of the numerical stability of the numerical formulation. In order to find the largest
time step for the formulations, we progressively increased the time step (�) with 0.01 and run the
code several times for a given Reynolds number until the solution is no longer convergent such
that we could not obtain a solution, i.e. the solution is divergent. In Tables III and IV we can see
that, in all cases, we can obtain numerical solution using larger time steps in compact formulation
compared with that of wide formulation. This would indicate that the compact formulation is
numerically more stable than the wide formulation and allows us to use larger time steps.

When running a code, one would like to use the maximum possible time step (�t) for a faster
convergence. In Tables III and IV, comparing the CPU time of the compact formulation when
maximum time step is considered (�=1.3) with the CPU time of the wide formulation when
maximum time step is considered (�=1.1), we can see that when maximum possible time steps are
used, the compact formulation runs approximately ≈1.3 times slower than the wide formulation
in terms of the CPU time.

5. CONCLUSIONS

In this study we have numerically solved the Navier–Stokes equations using both fourth-order
compact formulation and fourth-order wide formulation and compared the numerical performances
of both fourth-order formulations.

Solving a model problem that has an exact analytical solution to Navier–Stokes equations with
several different grid meshes showed that the solution of both wide and compact formulations,
indeed converge with fourth degree with respect to the grid spacing. In addition, solving the
benchmark driven cavity flow showed that the numerical solutions of both formulations are very
close to each other and produce spatially very accurate results.

We see that both wide and compact formulations converge to a specified convergence level in
almost the same number of iterations for a given Reynolds number and time step. In terms of
number of iterations necessary for convergence, both formulations have similar convergence rates.

For a given Reynolds number and time step, wide formulation requires less CPU time than the
compact formulation. In terms of computing time, wide formulation runs faster and is advantageous
over the compact formulation.

In compact formulation we were able to obtain convergence using larger time steps than the time
steps we use in wide formulation. This would show that the compact formulation is numerically
more stable than the wide formulation, i.e. allows us to use larger time steps. In terms of numerical
stability, compact formulation is advantageous over wide formulation.

We would like to point out that in order to use the wide formulation, the points adjacent to
boundaries have to be treated specially and doing this adds a great complexity in coding stage.
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On the other hand, even though compact formulation does not have this complexity and can be
easily used for the points adjacent to boundaries, in order to use a compact formulation one has
to deal with the extra coefficients in the equations and this can be counted as the complexity of
the compact formulation in coding stage. Therefore, we can fairly say that both wide and compact
formulations require almost the same level of coding effort.
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